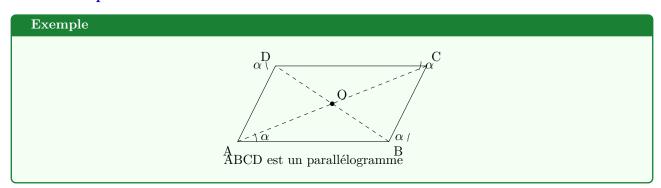
Parallélogramme

Niveau : 1ère Année Collège

Prof: AIT MAMA MOHAMED

Sommaire

- I. Le parallélogramme
- II. Propriétés
 - -- 2-1. Propriété des diagonales
 - 2-2. Propriété des côtés opposés
 - 2-3. Propriété des angles opposés
 - 2-4. Propriété des angles consécutifs
- III. Exercices

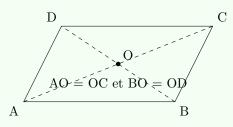

1 Le parallélogramme

1.1 Définition

Définition

Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles.

1.2 Exemple


2 Propriétés

2.1 Propriété des diagonales

Propriété directe

Dans un parallélogramme, les diagonales se coupent en leur milieu (appelé centre du parallélogramme).

Exemple

Propriété réciproque


Si dans un quadrilatère les diagonales se coupent en leur milieu, alors c'est un parallélogramme.

2.2 Propriété des côtés opposés

Propriété directe

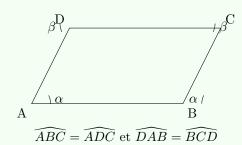
Dans un parallélogramme, les côtés opposés sont égaux en longueur.

Exemple

Propriété réciproque

Si dans un quadrilatère les côtés opposés sont égaux, alors c'est un parallélogramme.

Propriété réciproque particulière


Si dans un quadrilatère deux côtés opposés sont égaux et parallèles, alors c'est un parallélogramme.

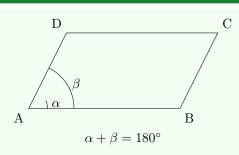
2.3 Propriété des angles opposés

Propriété directe

Dans un parallélogramme, les angles opposés sont égaux.

Exemple

Propriété réciproque


Si dans un quadrilatère les angles opposés sont égaux, alors c'est un parallélogramme.

2.4 Propriété des angles consécutifs

Propriété directe

Dans un parallélogramme, les angles consécutifs sont supplémentaires (leur somme vaut 180°).

Exemple

3 Exercices

3.1 Exercice 1

Exercice 1

Pour chaque énoncé, compléter les données, la propriété et la conclusion :

1. <u>Données</u> : ABCD est un parallélogramme.

Propriété : Dans un parallélogramme, ______.

 $\overline{\text{Conclusion}}$: Donc AB = CD et AD = BC.

2. Données : EFGH a ses diagonales [EG] et [FH] qui se coupent en leur milieu.

Propriété : Si dans un quadrilatère ______, alors _____.

<u>Conclusion</u>: Donc EFGH est un parallélogramme.

Solution Exercice 1

1. <u>Données</u> : ABCD est un parallélogramme.

Propriété : Dans un parallélogramme, les côtés opposés sont égaux.

 $\overline{\text{Conclusion}}$: Donc AB = CD et AD = BC.

2. <u>Données</u> : EFGH a ses diagonales [EG] et [FH] qui se coupent en leur milieu.

<u>Propriété</u> : Si dans un quadrilatère les diagonales se coupent en leur milieu, alors c'est un parallélogramme.

Conclusion : Donc EFGH est un parallélogramme.

3.2 Exercice 2

Exercice 2

Compléter les démonstrations suivantes :

1. $\underline{\text{Donn\'ees}}$: IJKL est un quadrilatère avec IJ = LK et IL = JK.

Propriété : Si dans un quadrilatère ______, alors _____

<u>Conclusion</u>: Donc IJKL est un parallélogramme.

2. Données : MNOP a $\widehat{M} = \widehat{O}$ et $\widehat{N} = \widehat{P}$.

Propriété :

<u>Conclusion</u>: Donc MNOP est un parallélogramme.

Solution Exercice 2

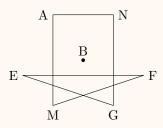
1. $\underline{\text{Donn\'ees}}$: IJKL est un quadrilatère avec IJ = LK et IL = JK.

 $\underline{\text{Propriét\'e}}: \text{Si dans un quadrilat\`ere les c\^ot\'es oppos\'es sont \'egaux, alors c'est un parall\'elogramme.}$

<u>Conclusion</u> : Donc IJKL est un parallélogramme.

2. Données : MNOP a $\widehat{M} = \widehat{O}$ et $\widehat{N} = \widehat{P}$.

Propriété : Si dans un quadrilatère les angles opposés sont égaux, alors c'est un parallélogramme.


<u>Conclusion</u>: Donc MNOP est un parallélogramme.

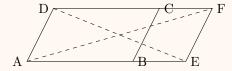
3.3 Exercice 3

Exercice 3

Dans la figure suivante, on a :

$$(EF) \parallel (AN)$$
 ; $(MN) \parallel (FG)$; $(MB) \parallel (EG)$

Montrer que : FA = BG.


Solution Exercice 3

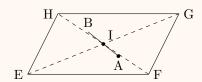
- $(EF) \parallel (AN)$ et $(MN) \parallel (FG)$ AEFN est un parallélogramme FA = EN
- $(MB) \parallel (EG)$ et $(MN) \parallel (FG)$ MEGN est un parallélogramme EN = BG
- Donc FA = BG

3.4 Exercice 4

Exercice 4

On considère la figure suivante où ABCD et BEFC sont deux parallélogrammes.

- 1. Donner deux droites parallèles à (BC) en justifiant.
- 2. Démontrer que AEFD est un parallélogramme.
- 3. Démontrer que [AF] et [ED] se coupent en leur milieu.


Solution Exercice 4

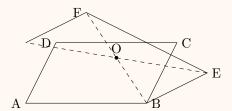
- 1. $(AD) \parallel (BC)$ car ABCD parallélogramme $(EF) \parallel (BC)$ car BEFC parallélogramme
- 2. On a:
 - $-- (AD) \parallel (BC) \text{ et } (EF) \parallel (BC) \mid (AD) \parallel (EF)$
 - -- AD = BC et EF = BC AD = EF
 - Donc AEFD a deux côtés opposés parallèles et égaux AEFD est un parallélogramme
- 3. Dans AEFD parallélogramme, les diagonales [AF] et [ED] se coupent en leur milieu.

3.5 Exercice 5

Exercice 5

EFGH est un parallélogramme de centre I. A est un point de [HF].

- 1. Construire B le symétrique de A par rapport à I.
- 2. Montrer que AEBG est un parallélogramme.


Solution Exercice 5

- 1. Construction : B est le point tel que I soit milieu de [AB]
- 2. Démonstration :
 - I est centre de EFGH milieu de [EG]
 - I est aussi milieu de [AB] (par construction)
 - Donc AEBG a ses diagonales [AB] et [EG] qui se coupent en leur milieu
 - AEBG est un parallélogramme

3.6 Exercice 6

Exercice 6

ABCD et BEDF sont deux parallélogrammes. Soit O le centre de BEDF.

- 1. Montrer que O est le milieu de [AC].
- 2. Montrer que AECF est un parallélogramme.

Solution Exercice 6

- 1. ABCD parallélogramme diagonales [AC] et [BD] se coupent en leur milieu
 - BEDF parallélogramme diagonales [BD] et [EF] se coupent en O
 - Donc O est milieu de [BD] et [EF], et aussi de [AC]
- 2. O milieu de [AC] et de [EF]
 - Donc AECF a ses diagonales qui se coupent en leur milieu
 - AECF est un parallélogramme

Fin de la séance - À vos exercices!