Géométrie dans l'espace

Niveau : 3^e Année Collège

Prof: AIT MAMA MOHAMED

Sommaire

- I. Orthogonalité dans l'espace
- II. Parallélisme dans l'espace
- III. Théorème de Pythagore
- IV. Agrandissement-Réduction
- V. Les volumes
- VI. Exercices

1 Orthogonalité dans l'espace

1.1 Définition

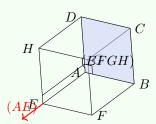
Orthogonalité

Une droite (D) est perpendiculaire à un plan (P) en A si elle est perpendiculaire à deux droites sécantes de (P) passant par A.

 $(D) \perp (P)$

Exemple

Dans un cube ABCDEFGH, montrons que $(AE) \perp (EFGH)$:



(AE) est perpendiculaire à (EF) et (EH) qui sont deux droites sécantes de (EFGH), donc $(AE) \perp (EFGH).$

1.2 Propriété

Propriété

Si une droite est perpendiculaire à un plan en A, alors elle est perpendiculaire à toutes les droites du plan passant par A.

Exemple

Dans le cube ABCDEFGH, montrons que AEG est rectangle en E:

 $(AE) \perp (EFGH)$ et $(EG) \subset (EFGH)$, donc $(AE) \perp (EG)$. Ainsi, le triangle AEG est rectangle en E.

2 Parallélisme dans l'espace

2.1 Définition

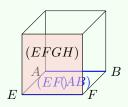
Parallélisme

Une droite (D) est parallèle à un plan (P) si elle est parallèle à une droite de (P).

$$(D) \parallel (P)$$

Exemple

Dans le cube ABCDEFGH, montrons que $(AB) \parallel (EFGH)$:



 $(AB) \parallel (EF) \subset (EFGH), \text{ donc } (AB) \parallel (EFGH).$

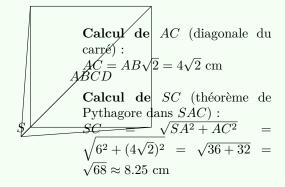
3 Théorème de Pythagore dans l'espace

${\rm Th\'{e}or\`{e}me}$

Dans un espace à trois dimensions, le théorème de Pythagore s'applique dans chaque plan contenant un triangle rectangle.

Exemple

Soit SABCD une pyramide à base carrée ABCD avec AB=4 cm et SA=6 cm.



4 Agrandissement - Réduction

4.1 Définition

Agrandissement-Réduction

En multipliant toutes les dimensions d'un solide par un facteur k>0, on obtient :

- Un agrandissement si k > 1
- Une **réduction** si 0 < k < 1

4.2 Propriété

Propriétés

Pour un rapport k:

— Longueurs : multipliées par \boldsymbol{k}

— Aires : multipliées par k^2

— Volumes : multipliées par k^3

5 Les volumes

Formules de volume

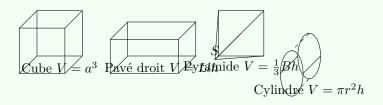
— **Cube** : $V = a^3$, $A_{\text{total}} = 6a^2$

— Pavé droit : V = Llh, $A_{\text{total}} = 2(Ll + Lh + lh)$

— **Pyramide** : $V = \frac{1}{3} \text{Aire}_{\text{base}} h$

- Cylindre : $V = \pi r^2 h$, $A_{\text{total}} = 2\pi r(r+h)$

Exemples



6 Exercices

6.1 Exercice 1

Exercice 1

Soit ABCDEFGH un parallélépipède avec $AB=3,\,BC=4,\,AE=5.$

0. Calculer CH et EG

0. Soit I le centre de EFGH

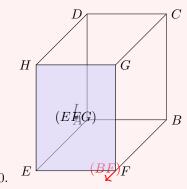
0. Montrer que $(BF) \perp (EFG)$

0. En déduire que $(BF) \perp (IF)$

0. Calculer IB

Solution Exercice 1

0. $CH = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ $EG = \sqrt{3^2 + 4^2} = 5$



- 0. $(BF) \perp (EF)$ et $(BF) \perp (FG)$, donc $(BF) \perp (EFG)$
- 0. Comme $(IF) \subset (EFG)$, alors $(BF) \perp (IF)$
- 0. $IB = \sqrt{1.5^2 + 2^2 + 5^2} = \sqrt{2.25 + 4 + 25} = \sqrt{31.25} = \frac{5\sqrt{5}}{2}$

6.2 Exercice 2

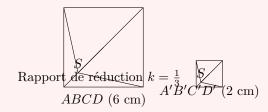
Exercice 2 (Pyramides)

Soit SABCD une pyramide à base carrée ABCD avec SO=5 cm, AB=6 cm. La pyramide SA'B'C'D' est une réduction avec A'B'=2 cm.

- 0. Calculer l'aire de ABCD
- 0. Calculer le volume de SABCD
- 0. Trouver le coefficient de réduction
- 0. Calculer le volume de SA'B'C'D'

Solution Exercice 2

- 0. Aire de $ABCD=66=36~\mathrm{cm^2}$
- 0. Volume $SABCD = \frac{1}{3}365 = 60 \text{ cm}^3$
- 0. Coefficient $k = \frac{A'B'}{AB} = \frac{2}{6} = \frac{1}{3}$
- 0. Volume $SA'B'C'D' = 60(\frac{1}{3})^3 = \frac{60}{27} \approx 2.22 \text{ cm}^3$



6.3 Exercice 5

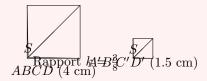
Exercice 5 (Pyramide régulière)

SABCD est une pyramide régulière à base carrée (AB=4 cm) de sommet S. SA'B'C'D' est une réduction avec A'B'=1.5 cm et SO=5 cm.

- 0. Calculer le coefficient de réduction
- 0. Calculer le volume de SA'B'C'D'

Solution Exercice 5

- 0. Coefficient $k = \frac{1.5}{4} = \frac{3}{8}$
- 0. Volume original $SABCD = \frac{1}{3}165 = \frac{80}{3} \text{ cm}^3$ Volume réduit $SA'B'C'D' = \frac{80}{3}(\frac{3}{8})^3 = \frac{80}{3}\frac{27}{512} = \frac{45}{32} \approx 1.41 \text{ cm}^3$



6.4 Exercice 6

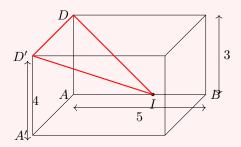
Exercice 6 (Pavé droit)

ABCDA'B'C'D' est un pavé droit avec $AB=5,\ BC=3,\ AA'=4.$ I est un point de [AB] tel que IB=2.

- 0. Montrer que $(DD') \perp (ABC)$
- 0. En déduire la nature du triangle IDD^\prime
- 0. Calculer ID'

Solution Exercice 6

- 0. (DD') est parallèle à (AA') qui est perpendiculaire à (ABC), donc $(DD') \perp (ABC)$
- 0. IDD' est rectangle en D
- 0. $ID = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$ $ID' = \sqrt{(3\sqrt{2})^2 + 4^2} = \sqrt{18 + 16} = \sqrt{34} \approx 5.83$



www.massar 360.com